- Advertisement -
Zane

Physical characteristics

- Advertisement -

While the giant-impact theory explains many lines of evidence, some questions are still unresolved, most of which involve the Moon’s composition.[52]

- Advertisement -

In 2001, a team at the Carnegie Institute of Washington reported the most precise measurement of the isotopic signatures of lunar rocks.[53] The rocks from the Apollo program had the same isotopic signature as rocks from Earth, differing from almost all other bodies in the Solar System. This observation was unexpected, because most of the material that formed the Moon was thought to come from Theia and it was announced in 2007 that there was less than a 1% chance that Theia and Earth had identical isotopic signatures.[54] Other Apollo lunar samples had in 2012 the same titanium isotopes composition as Earth,[55] which conflicts with what is expected if the Moon formed far from Earth or is derived from Theia. These discrepancies may be explained by variations of the giant-impact theory.

- Advertisement -
- Advertisement -

Physical characteristics
The Moon is a very slightly scalene ellipsoid due to tidal stretching, with its long axis displaced 30° from facing the Earth, due to gravitational anomalies from impact basins. Its shape is more elongated than current tidal forces can account for. This ‘fossil bulge’ indicates that the Moon solidified when it orbited at half its current distance to the Earth, and that it is now too cold for its shape to adjust to its orbit.[56]

- Advertisement -
- Advertisement -

Internal structure
Main article: Internal structure of the Moon
Lunar surface chemical composition[57]
Compound Formula Composition
Maria Highlands
silica SiO2 45.4% 45.5%
alumina Al2O3 14.9% 24.0%
lime CaO 11.8% 15.9%
iron(II) oxide FeO 14.1% 5.9%
magnesia MgO 9.2% 7.5%
titanium dioxide TiO2 3.9% 0.6%
sodium oxide Na2O 0.6% 0.6%
99.9% 100.0%
The Moon is a differentiated body that was initially in hydrostatic equilibrium but has since departed from this condition.[58] It has a geochemically distinct crust, mantle, and core. The Moon has a solid iron-rich inner core with a radius possibly as small as 240 kilometres (150 mi) and a fluid outer core primarily made of liquid iron with a radius of roughly 300 kilometres (190 mi). Around the core is a partially molten boundary layer with a radius of about 500 kilometres (310 mi).[59][60] This structure is thought to have developed through the fractional crystallization of a global magma ocean shortly after the Moon’s formation 4.5 billion years ago.[61]

- Advertisement -

Crystallization of this magma ocean would have created a mafic mantle from the precipitation and sinking of the minerals olivine, clinopyroxene, and orthopyroxene; after about three-quarters of the magma ocean had crystallised, lower-density plagioclase minerals could form and float into a crust atop.[62] The final liquids to crystallise would have been initially sandwiched between the crust and mantle, with a high abundance of incompatible and heat-producing elements.[1] Consistent with this perspective, geochemical mapping made from orbit suggests a crust of mostly anorthosite.[14] The Moon rock samples of the flood lavas that erupted onto the surface from partial melting in the mantle confirm the mafic mantle composition, which is more iron-rich than that of Earth.[1] The crust is on average about 50 kilometres (31 mi) thick.[1]

- Advertisement -

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button
Close